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Caution:  These solutions have been obtained in one pass, and have not been double-checked.

Chapter 1

1.1   When all precipitation enters into the soil surface, the flux through the soil storage system is 0.8 m y-1. Soil storage amounts to 0.05 m.   Hence the residence time is 0.05/0.8 = 0.0625 y = 23 days. When the flux is only 0.4 m y-1, the residence time is 46 days.

1.2   An energy flux in equivalent mm y-1 of evaporation is (3600*24*365*10-6/2.5) = 12.6 times that flux expressed in W m-2.  Hence for net radiation this is 1,312 mm/y, for evaporation 1,009 mm/y, and for sensible (turbulent) heat flux 240 mm/y.
Chapter 2
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2.4   Because 
[image: image5.wmf]1/2

10

10exp(0.4 Cd)

o

z

-

=-

, one obtains 
[image: image6.wmf]5-4

3.120 109.144 10

o

z

-

££

 m.

Similarly, 
[image: image7.wmf]1/2

1010

10exp(0.4 Cd/Ce)

ov

z

=-

, so that 
[image: image8.wmf]4-6

2.643 105.935 10

ov

z

-

³³

 m.

2.5   Using the same approach as in the previous problem one obtains 
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2.7           
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2.9         
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2.10   Several combinations of 
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 are possible.  Two possibilities are as follows.  If 
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     If  
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2.11

(a)  For the average air temperature, and an assumed pressure of 101325 Pa, the density of the air is 1.16 kg/m3.  The calculations of 
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 are carried out with (2.50) and (2.51) [or (2.54) and (2.55)], in which the 
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, one obtains an initial estimate of the heat flux H = 64.01 W/m2.  This produces the first estimate of the Obukhov length by means of (2.46), namely L = -16.44 m.  This value of L can now be used to obtain new estimates of 
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, from which an improved value of L is obtained, and so on. The process converges rapidly.  After 9 iterations the results stabilize at 
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2.12   (a)  
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(b)   if the pressure is assumed to be 1013 hPa at 2 m above the surface, the density of the air is 
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2.14   (a)   From (2.77) for 
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(b)   At sunrise and sunset 
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from which (2.78) follows immediately.

2.16   On June 21 the declination is 
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2.17   For a vibrant short vegetation assume an albedo 
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 K, and with (2.14) the vapor pressure in the air is 
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hPa; hence with (2.81) the atmospheric emissivity is 
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W/m2.  With the surface temperature assumed to be the same as the air temperature, (2.79) yields an upward long-wave radiation 
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 W/m2.  The net radiation is obtained with (2.73), namely 
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2.18   For a vibrant short vegetation assume an albedo 
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 K, and with (2.14) the vapor pressure in the air is 
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 hPa; hence with (2.81) the atmospheric emissivity is 
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W/m2.  With the surface temperature assumed to be the same as the air temperature, (2.79) yields an upward long-wave radiation 
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2.19   For a deep water body assume an albedo 
[image: image75.wmf]0.05

s

a

=

, and a surface emissivity 
[image: image76.wmf]1.00

s

e

=

.  Consider first the month of December.  Figure 2.23 indicates that the daily extraterrestrial radiation is roughly 
[image: image77.wmf]145

se

Q

=

 W/m2.  With (2.74) this yields a daily short-wave radiation at ground level of 
[image: image78.wmf]60.18

s

Q

=

 W/m2 and a value of net short-wave radiation of 
[image: image79.wmf](1)57.17

ss

Q

a

-=

 W/m2.  The air temperature is 
[image: image80.wmf]273.162.78270.38

a

T

=-=

 K, and with (2.14) the vapor pressure in the air is 
[image: image81.wmf]0.764.983.78

a

e

=´=

 hPa; hence with (2.81) the atmospheric emissivity is 
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For the month of July the corresponding values are as follows. 
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2.20   Because the temperature of the air equals that of the snow cover, the lower atmosphere is neutral, so that 
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2.21   The literature review behind (2.87) indicates that typical values of 
[image: image105.wmf] and 

Ro

ca

 are around 0.37 and 0.5, respectively.  For cropland Table 2.9 gives a mean value of the leaf area index 
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2.22    The earth, as “seen” by the sun, is a circle with area 
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Chapter 3

3.1
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3.2   Recall that n is the number of stations and m is the number of subareas.  When b=0, one has 
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where 
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 is the arithmetic mean of P.  Hence, (3.2) becomes
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3.3   The rainfall at station m (the one with a malfunctioning gage or without a gage), which is surrounded by (n-1) functioning gage, can be estimated by means of
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3.4   Typical values are 
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3.6  Several estimates can be made.  Table 3.2 suggests a value between 401 and 440 mm; but these are just two isolated maxima.  If all other observed maxima are considered, which suggest a power-type function, Figure 3.17 indicates PD = 500 mm, approximately.  Similarly, from Equation (3.5) one obtains   
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3.7   Assume that the deficiency in Fig. 3.21 is the same as the percent difference in Fig. 3.22 divided by 100.  Inspection of the two figures indicates that typical rainfall intensities of curve 1 in Fig. 3.21 must have been in the range of roughly 1 to 1.5 mm/h.
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Chapter 4

4.1   According to (4.3) one has 
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4.2   With a surface roughness of 0.01 m and a wind speed of 5 m/s at 2 m above the ground surface, (2.41) produces a friction velocity equal to 
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The rate of evaporation is given as E = 4 kg m-2 d-1 = 4/(3600*24) kg m-2 s-1.  Assuming an atmospheric pressure of about 1000 hPa, one obtains from Table 2.4, with (4.6) and a relative humidity of 60 % and a temperature of 20oC, the value of the specific humidity at 2 m, namely 
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[image: image130.wmf]10

0.00831

q

=

.

4.3   Assume equality of the scalar roughness lengths 
[image: image131.wmf]ovoh

zz

=

, and of the stability correction functions 
[image: image132.wmf]vh

Y=Y

; also, assume that the actual and potential temperature differences are equal, i.e. 
[image: image133.wmf]22

ss

TT

qq

-=-

.  Under neutral conditions the derivation is simple: eliminating the term 
[image: image134.wmf](

)

*2

/ln[()/]

ooh

kuzdz

r

-

 between (2.44) and its analog for temperature, one obtains the desired result.  In SI units a mass flux is normally given in kg/(m2s).  Because here the rate of evaporation E is given in mm/d and the density of liquid water is around 1000 kg/m3, the final result is
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in units of W m-2.    Under non-neutral conditions, eliminate the term 
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4.4   The specific humidity which is defined in (2.2) can be expressed as the ratio of (2.5) and (2.4); this produces 
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4.5   First equate (4.3) and (4.7); this produces 
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4.6   b, c, d.

4.7   a, b, c, d, e.
4.8   Consider (4.28) with (4.25) to obtain the scalar roughness length explicitly as follows 
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Note that the factor 
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 is needed to convert the units of (4.25) from 
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.  This expression can be solved for 
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4.9   At 25oC the latent heat of evaporation is 2.442 106 J kg-1.  Thus an energy supply rate of 1 J m-2s-1 is capable of evaporating (2.442 106)-1kg m-2s-1; this is equivalent with             (3600*24*30*10-6/2.442) =  1.06 kg m-2month-1.  Because the density of liquid water is around 1000 kg m-3, this is 1.06 mm/month.
4.10   (a)   The evaporation rate was  E = 5*10-8 m/s =  5*10-5 mm/s = 5*10-5 kg/(m2 s).  Assume that on average the latent heat of evaporation is 
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(b)   The Bowen ratio was 
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(c)   The atmosphere was unstable because 
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(d)   The ground was warming because 
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4.11   (a)   According to (4.13) with the assumption that 
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Therefore the rate of evaporation can also be expressed as 
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(b)   The Bowen ratio was 
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(c)   The atmosphere was unstable because 
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, which means that the sensible heat flux was upward, and 
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(d)   The ground was warming because 
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, that is the heat flux into the ground was positive.

4.12   According to the calculations for Problem 2.17, for that summer day the air temperature was 
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 K, and with (2.14) the saturation vapor pressure in the air was 
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 hPa, and the actual vapor pressure in the air was 
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The average net radiation was calculated as 
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3.586 mm/d.

At this air temperature Figure 4.2 indicates that roughly 
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.  In the absence of a more detailed table, the values listed in Table 4.1 can be interpolated by means of standard formula’s such as, for example, Stirling’s or Bessel’s; with Bessel’s formula retaining second differences for 
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The wind speed is given as 10.4 km/h at 10 m above the ground.  Equation (4.25) requires the mean wind speed in m/s at 2 m above the surface.  To a first approximation in the present application, one can use (4.26), so that the required wind speed is 
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 m/s.
(a) With these values Penman’s (4.23) with (4.24) and (4.25) yields an evaporation rate 
[image: image177.wmf]E
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 3.749 mm/d.

(b)  Equation (4.31) of Priestley & Taylor produces 
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 3.020 mm/d.

(c)   Equilibrium evaporation (4.30) yields 
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 2.378 mm/d.

(d)   Equation (4.48) of Brutsaert & Stricker’s advection aridity approach produces 
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2.292 mm/d.

4.13   According to the calculations for Problem 2.18, for that summer day the air temperature was 
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 K, and with (2.14) the saturation vapor pressure in the air was 
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 hPa, and the actual vapor pressure in the air was 
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The average net radiation was calculated as 
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 W/m2.  This is equivalent with 
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3.808 mm/d.

At this air temperature Figure 4.2 indicates that roughly 
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.  The values listed in Table 4.1 can be interpolated by means of Bessel’s formula; retaining second differences for 
[image: image187.wmf]o

20.45C

a

T

=

 one obtains a value 
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The wind speed is given as 8.96 km/h at 10 m above the ground.  Equation (4.25) requires the mean wind speed in m/s at 2 m above the surface.  To a first approximation in the present application, one can use (4.26), so that the required wind speed is 
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(a) With these values Penman’s (4.23) with (4.24) and (4.25) yields an evaporation rate 
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 4.067 mm/d.

(b)  Equation (4.31) of Priestley & Taylor produces 
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 3.349 mm/d.

(c)   Equilibrium evaporation (4.30) yields 
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 2.637 mm/d.

(d)   Equation (4.48) of Brutsaert & Stricker’s advection aridity approach produces 
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2.631 mm/d.

4.14   The equilibrium evaporation as defined in (4.30) implies a Bowen ratio 
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.  As shown in Table 4.1, at a temperature of 25oC its magnitude is 0.3505

4.15   a, c, d, e

4.16   Consider first the month of December.

(a)   The air temperature is 
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= 4.313 mm/d.  Thus with (4.16) this yields a rate of evaporation 
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= 2.135 mm/d.

(b) To determine 
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, the values listed in Table 4.1 can be interpolated by means of Bessel’s formula;  for 
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The wind speed is given as 15.3 km/h at 10 m above the ground.  Equation (4.25) requires the mean wind speed in m/s at 2 m above the surface.  To a first approximation in the present application, one can use (4.26), so that the required wind speed is 
[image: image208.wmf]2

3.38

u

=

 m/s.

With the given values, Penman’s (4.23) with (4.24) and (4.25) yields an evaporation rate 
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 2.14 mm/d; Priestley and Taylor’s (4.31) with 
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For the month of July the corresponding values are as follows.

(a)   The temperatures are 
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-0.446 mm/d; with (4.16) 
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(b) To determine 
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, the values listed in Table 4.1 can be interpolated by means of Bessel’s formula;  for 
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The wind speed is 10.1 km/h at 10 m, so that 
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Hence from (4.23) 
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 1.22 mm/d, according to Penman, and 
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4.17   Equation (4.3) can be applied directly with the available data. 

(a)  Consider first the month of December.

The air temperature is 
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 and the relative humidity is 0.76; with (2.14) the vapor pressure in the air is 
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For the month of July the air temperature is 
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(b)  For the month of December the atmosphere was unstable; therefore a larger value of Ce should be used.  In July the air was stable; therefore a smaller value of Ce should be used.  This is illustrated by comparing the results of this exercise with the energy budget results of exercise 4.16. 

4.18   Equation (4.3) can be used to estimate potential evaporation, that is evaporation from a moist surface, as follows
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 is the saturation specific humidity at the temperature of the moist surface.  The actual evaporation from a non-moist surface, formulated in terms of the resistance parameter, is given by (4.38), that is
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Hence, 
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, as defined in (4.33), becomes
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4.19   A longitude of 96o31’ is equivalent with a time difference of (96+31/60)*24/360 = 6.434 h. Therefore, local (solar) time at that location is 6.434 h behind UTC, or 1.434 h = 1 h and 26 min behind CDT.  This means that solar noon occurs at 1:26 pm or 1326 CDT.

4.20   The three required equations are 


[image: image253.wmf]en

LEHRG

+=-


and (2.50) and (2.51); in the latter two 
[image: image254.wmf]/()

o

p

wHc

qr

¢¢

=

 and the functions 
[image: image255.wmf]() and ()

mh

zz

YY

 are given by (2.63) and (2.64), respectively.  The system can be solved by iteration; the initial estimates of 
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Chapter 5

5.1   In this case [(unlike (1.13)], the z-axis is not vertical but normal to the bed, which has a slope angle 
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 with the horizontal.  Thus the x-component (parallel with the bed) of (1.12) can be written as 
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If there is also a local source flow 
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, this is accelerated instantaneously from 0 to the velocity u of the ambient fluid; this represents a rate of change in momentum (per unit mass) in the x-direction equal to 
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The flow is turbulent and therefore the dependent variables are conveniently decomposed into a mean and a turbulent fluctuation as follows: 
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 Equation (1) becomes in terms of the decomposed variables
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Apply now the time-averaging operation, represented by the overbar symbol, i.e. 
[image: image268.wmf] to each of the terms in (2).  Recalling that the mean of a mean remains the mean, and that the mean of a turbulent fluctuation is zero, and also noting that the averaging operation is independent of the partial derivative operations (in the case of the time derivative the reason is that the time scales of both operations are totally different), one finally obtains
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The equation of continuity (1.9) is equally applicable to the mean and to the turbulent velocity fluctuations.  After multiplying the equation of continuity for the velocity fluctuations by 
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, and subsequently applying the averaging operation to this product, one obtains the following zero magnitude quantity
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Because it is zero, it can be simply subtracted from the right hand side of (3) without affecting it.  Thus one finally obtains
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For two-dimensional flow, one can omit the mean flow in the y-direction and also gradients of mean quantities in the y-direction,  i.e.  
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which is the desired result (5.14)

5.2    With (5.30), i.e. 
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The logarithmic velocity distribution is applicable between 
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or
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This becomes finally,
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which reduces to (5.35) when 
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5.3   Note again that the logarithmic velocity distribution is applicable between 
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Upon integration this is 
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This can be simplified to 
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which is the desired result.  It shows that the correction factor 
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5.4   In contrast to the logarithmic velocity distribution, the power-type velocity distribution function (5.37) is applicable between 
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This correction factor approaches unity when m becomes smaller, that is when the turbulent mixing becomes more intense, so that the velocity profile becomes more uniform.  For instance as 
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5.5   For a triangular cross section:
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For a rectangular cross section:
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5.6   From inspection of (5.38), it can be seen that the values of the powers in (5.43) would be 
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5.7   For the given geometry of the channel, the water surface width is 
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.  According to (5.41) the velocity is V = 2.4994 m/s, and the rate of flow 
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 , and the resulting Reynolds number is Re = 2.46 106.

5.8   The channel has the same characteristics as in the previous problem.  Thus the values of 
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 are kept constant and the side banks have a slope of 1 vertical and 2 horizontal.  Adopt a trial value of h and proceed to calculate a first value of Q as in the previous problem.  Adjust the value of h and calculate a new value of Q.  Continue this process until Q = 60 m3/s is obtained.  The calculations can be easily carried out on spreadsheet, or by using standard interpolation procedures.  The solution is 
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5.9   Equating (5.34) [in terms of the roughness 
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 as in (2.41)] with (5.36), one can write 
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.  From this it follows that the average velocity occurs at the depth where 
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; this is close to the ratio 0.40, which is commonly used in stream gauging practice.

5.10   Equating (5.37) with (5.38), one can write  
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; thus the ratio depends on m.  For example, for m = 1/6, one has z/h = 0.397 , for m = 1/7, one has z/h = 0.393; this illustrates that the ratio decreases with decreasing m.  It is of interest to note that, by putting 
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, which in the limit, as 
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, approaches  exp(-1) = 0.368; this is the same value as that obtained in the previous exercise with the logarithmic profile.  Again, all these values are close to the ratio 0.4, which is commonly used in stream gauging practice.

5.11   When the velocity profile is logarithmic, the true mean velocity is given by (5.36), that is
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This is approximated by the average of the measurements at the 2 depths, or using (5.34) [in the form of (2.41)],


[image: image332.wmf](

)

(

)

*

ln0.2 / ln0.8 / 

2

approxoo

u

Vhzhz

k

éù

=+

ëû


Thus the error is
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The error depends on the relative roughness of the river bed 
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, and it decreases with decreasing roughness.  For example, for 
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.  Evidently, this practice is quite accurate, at least when compared to all the other errors incurred in stream flow measurements, such as due to uncertainty in the bed geometry or current meter functioning and calibration.

5.12   For conciseness of notation put 
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and
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In a similar way one has 
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and
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Substitution of (1) and (2) into (5.49) shows that (5.51) satisfies this differential equation, and is therefore a solution.

5.13   From the definition of 
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Therefore, the second term on the left of (5.87) can be transformed as follows
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But from (5.93) and (5.43) [i.e. (5.39) for a wide channel, with an effective width 
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or, upon retaining only the uniform steady part, 
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5.14   The second term on the left of this diffusion equation is known as the advectivity and it represents 
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, the speed of propagation (or celerity) of the bulk of the flood wave [cf. (5.91) and (5.94)]. 

(a)  According to the Kleitz-Seddon principle (5.108) with (5.43), the mean velocity is  
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(b)   From (5.91) and (5.94) (dropping the zero subscripts) or from (5.112) one has to a good approximation  
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From (5.43) one has 
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(c)  The magnitude of the coefficient 2.17 indicates that the flood wave is traveling at that celerity (in this case in m/s); it indicates the rate of translation of the centroid of the wave in the downstream direction.  The magnitude of the coefficient 1365, which is a diffusivity, is related to the rate of spreading (or flattening) of the flood wave with time (and traveled distance downstream); the larger it is, the faster the wave diffuses out and attenuates. 

5.15  (a) Equation (5.39) produces the following rate of flow in the case of a narrow channel 
[image: image365.wmf]1

baa

rfcw

QCSAP

+-

=

.  Because the wetted perimeter 
[image: image366.wmf]w

P

 depends on the same geometric parameters as 
[image: image367.wmf]c

A

, one obtains with (5.112) 
[image: image368.wmf]11

()/()/

baabaa

krfwccrfcwc

cCSPdAdACSAdPdA

-++-

=+

.  An infinitesimal increase in cross sectional area can be expressed as 
[image: image369.wmf]cs

dABdh

=

.  Hence the celerity becomes 
[image: image370.wmf]111

(1)()()/

baa

krfcwsw

caVCSAaPBdPdh

+---

=++-

, which is in the form of (5.114).

(b) In the case of a triangular cross section, (with a bottom angle 
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 and a maximum depth h as the vertex of the triangle), one has the following relationships:
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5.16    b, d.
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Chapter 6

6.2   At any distance x on a plane, as shown in Figure 6.1, under steady state conditions the rate of flow (per unit width of plane), resulting from a constant rainfall rate P, is given by 
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6.3   First establish whether the flow is laminar or turbulent.  At the downstream end of the plane, where the flow rate reaches its maximum, the Reynolds number is 
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.  Thus with 
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Laminar flow with rainfall impacting on the surface can be described by (5.33).  The kinematic wave assumption allows 
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.  Under steady conditions the rate of flow is equal to the rainfall on the upstream plane, so that 
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in which one can use 
[image: image389.wmf]2.32,0,0.4
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, provided P inside the round brackets is expressed in cm/h, that is 3.7 cm/h; note that the other P  should be expressed in units that are consistent with those of the other variables, in this case 
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6.4   Because the flow is steady but still spatially varied, the only terms that can be omitted are 
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For flow in a wide channel, according to (5.43) the friction slope is
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in which the values of the parameters 
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 are listed in Table 5.2.

6.5   According to (6.10), after the rain ceases so that 
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6.6   The volume of rain water, which does not run off the plane during the rising of the outflow hydrograph, is held in storage on the plane.  This volume is the input minus the output, and according to (6.21) this volume (per unit width of plane) can be calculated as follows 
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After substitution of (6.20), that is 
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This water, which is stored on the plane, results in the outflow after the rainfall has ceased.  Thus if now 
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which can readily be integrated to obtain 
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; this is 

the same as the volume obtained during the rising of the hydrograph, as required.

6.7   (a) For a typical temperature of 10oC, the viscosity is 
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.  Thus with 
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(b) The parameter 
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 in the kinematic relationship (6.8) can be obtained from (5.33) as 
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 is calculated with (6.21).  In SI units this outflow rate is normally in m2/s, but for convenience it can also be expressed in mm/h by multiplying it by 
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 in which L = 40 m.  For t = 0.05, 0.1, 0.15, 0.168 h, the calculations without rain effect in (5.33) yield respectively 
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[image: image429.wmf]0.311,2.49,8.41,19.92,25

L

q

=

 mm/h.

6.8   (a) For a typical temperature of 10oC, the viscosity is 
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.  Thus with 
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(b) The parameter 
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 in the kinematic relationship (6.8) can be obtained from (5.41).  Assuming a roughness coefficient 
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The time to equilibrium, obtained with (6.20), is 
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 is calculated with (6.21).  In SI units this outflow rate is normally in m2/s, but for convenience it can also be expressed in mm/h by multiplying it by 
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 in which L = 45 m.  For t = 0.01, 0.02, 0.03, 0.04, 0.05, 0.0598 h, the calculations yield respectively 
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6.9   (a) For a typical temperature of 10oC, the viscosity is 
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, which indicates laminar flow conditions, and the applicability of (5.33), or rather (5.32), because the effect of the rain drop impact need not be considered.

(b) The parameter 
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 in the kinematic relationship (6.8) can be obtained from (5.32) as 
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(c) By trial and error or interpolation, one finds that after 15 min (= 900 s) the rate of flow is 1.72 mm/h (= 1.24 10-5 m2/s). 

6.10   From (6.37) the relative increase equals the ratio 
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[image: image456.wmf][3]/3

bc

o

aSP

+

; with 
[image: image457.wmf]2.32,0,0.40 and 3 cm/h

abcP

====

 this indicates that as the rainfall ceases suddenly, the flow rate becomes 2.2 times the equilibrium flow rate 
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 the answer is nearly the same, namely 2.14 times the equilibrium flow rate.

6.11   The average depth can be defined as 
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.  Under steady state conditions, at any point x the rate of flow is 
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in which use is made of the fact that 
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6.12   c, d, e.

Chapter 7

7.1   As was done in the example, assume that the channel is wide so that 
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If it takes 57 minutes to cover 23 km, the required celerity is 
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(a)  With a GM roughness 
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(b) In the same way for 
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7.2   With a GM roughness 
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7.3   Equation (7.37) can be applied directly.  With 
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	0
	139
	139

	1
	124
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	2
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	3
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	4
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	5
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	6
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	9
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	10
	2090
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	11
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	2024

	12
	1622
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	1333
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                                 etc.

7.4   (a) The values of the coefficients, obtained with (7.44), are as follows, 
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(b) With (7.45) these yield the Muskingum parameters 
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(c)  The results can be presented in the same manner as in Figure 7.10.  The calculated values for days 1, 2, 3, etc. are 0, 59, 135, 224, 343, 461, 530, 664, 971, 1288, etc., m3/s.

7.5   (a) By plotting 
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 in the manner shown in Figure 7.9 for different trial values of X, a “satisfactory” overall single-valued relationship can be obtained with 
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.  (The procedure is subjective, but to the eye it seems to be better than with other choices of X, at least in the range of high flows).  The corresponding slope of the regression through the points is 
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(b)  The results can be presented in the same manner as in Figure 7.10.  The calculated values for days 1, 2, 3, etc. are 0, 68, 151, 243, 372, 501, 556, 677, 1027, 1389, etc., m3/s.

7.6   (a) In the linear case the design outflow peak is 
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(b) In light of (5.41) for a wide channel, (7.57) can be written as 
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For the same reason, (7.58) can be written as 
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7.7   It takes the flood wave 
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7.8  The coefficient 2.17 in the diffusion equation of Exercise 5.14 represents the celerity of the flood wave in the channel.  Since K represents the time of travel of the wave, for a channel reach of 2.5 km, its value is 
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7.9   (a) With 
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[image: image509.wmf]0.25

X

=

, the Muskingum storage function (7.15) is simply 
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 (in m3h/s).  Substitution in the storage equation (7.35), in which 
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(b) 
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(c) The celerity of the flood wave is to a good approximation given by the kinematic approach (Kleitz-Seddon formula), so that 
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.  The travel time of the wave through the reach is 
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7.10   (a) The values of the coefficients can be obtained with (7.44), and are as follows, 
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(b) With (7.45) these yield the Muskingum parameters 
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(c) The results can be presented in the same manner as in Figure 7.10.  The calculated values for days 1, 2, 3, etc. are 0, 681, 1936, 4560, 7144, 7328, 5666, etc., m3/s.

7.11   (a) The flow velocity at that point is 
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m/s.  With the Kleitz-Seddon relationship this gives 
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 m/s = 10.3 km/h.

(b) With 
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, the Muskingum storage function (7.15) is simply 
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 (in m3h/s).  Substitution in the storage equation (7.35), in which 
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.  By routing the given inflow hydrograph with this equation, on finds a peak outflow rate of 56.8 m3/s. 

7.12   For convenience rewrite (7.47)
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From (7.38) it follows that 
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and (7.47) can be rewritten as
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After substitution of (7.49), namely
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this transforms further into 
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which directly leads to (7.50).

7.13   In (5.63) the Froude number is defined as 
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.  This expression should be applicable to any flow rate with concurrent variables 
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 refer to values of variables and parameters obtained from the record, and the subscript 
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 refer to those to be used in the design calculations; then, in the example where values of the variables for the peak inflows are used as reference, the ratio of both expressions is
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which is essentially (7.59). 

7.14     a.

7.15     a, b, e
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Chapter 8

8.1   In the case of parallel plates (8.3) requires 
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8.2   (a) 
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(b)   If the water table were stationary and the profile in equilibrium, the water content would be 
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.  In reality, it is 
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, which is higher than equilibrium.  This means that the water content has not had the time yet to adjust, and the water table is falling.  An alternative explanation is that a water content of 
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; thus the suction (or negative pressure) is smaller than 100 cm, i.e. the pressure is larger than hydrostatic at that height, which implies downward flow.

8.3
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8.5   

[image: image556.emf]0

50

100

0 5 10 15 20 25 30


8.6   (a) In general, the slope angle with the x-axis is 
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(b) In general, 
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Hence the vector is 
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8.7   (b)  The gradient is orthogonal to the equipotentials, so that 
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8.8   With (8.15) first obtain the derivative  
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8.9   When the variables are in cm, (8.5) is simply 
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With (8.15) the density is 
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8.10
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8.11   From (8.14) one has 
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8.12   From (8.14) one has 
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[image: image578.wmf]22/

0

()

e

S

b

be

HSxxdx

-

-

ò

, which upon integration becomes 
[image: image579.wmf]2222/

/[(2)(22)]

b

be

HbSbb

-+

++

.  Substitution in (8.48) yields (8.49). 

8.13   At 20oC the surface tension is approximately 
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(a) Equation (8.49) produces the permeability 
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(b) With (8.23) the hydraulic conductivity is 
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8.14   Use the last two equations of (8.67) to express 
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 in terms of the other variables in those same two equations; then, substitute the resulting expressions for 
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 into the first three equations of (8.67).

8.15   The first equation of (8.76) is obtained by first operating on (8.74) as indicated in the text, and then replacing the first term on the left by (8.61). Rewrite the first of (8.76) for convenience
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                 (8.76)

The left hand side can be developed as
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or, after making use of the continuity equation for the solid (8.63) in the second term,
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The first term is kept as it is. The order of spatial and temporal partial derivatives can be inverted; therefore, in the second term use can be made of (8.58), replacing the divergence of the solid displacement by the strain.  The third term cancels the fifth.  The compressibility is usually defined as 
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; therefore if the finite differences are replaced by partial time derivatives to define 
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, this is no longer the compressibility in the strict sense, but it can still be considered and treated as a parameter related to the fluid compressibility.  Thus assume that the fourth term can be written as 
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             (8.80)
On account of (8.79) the second term can be expressed in terms of the pressure fluctuations in the water and in the air.  This produces immediately the first of (8.82), which is the desired result.
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Chapter 9

9.1   (a) The cumulative infiltration volume can be calculated from (9.63) with 
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, as follows 
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or, upon integration 
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(b) The rate of infiltration is 
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(c) The wetting front can be found where 
[image: image599.wmf]i

qq

=

, or


[image: image600.wmf]1/2

[2.870.04]2.91 cm

f

ztt

=+=

.

9.2   (a) Proceed as in 9.2.  Thus,


[image: image601.wmf]111

1/249

000

  [2.90(1)0.05(1)]

o

i

oo

FzdzdStSdStSdS

q

q

qqq

===-+-

òòòò



[image: image602.wmf]1/2

[2.320.045]

o

Ftt

q

=+

 cm.

(b)  
[image: image603.wmf]1/2

/[1.160.045]

o

fdFdtt

q

-

==+

 cm/min.

(c)  
[image: image604.wmf]1/2

[2.900.05]2.95 cm

f

ztt

=+=


9.3   Straightforward

9.4   The two functions are related as 
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9.5   As shown in the previous Exercise, Horton’s (9.76) produces a cumulative infiltration 
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9.6   The two functions are related as 
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9.7  A steady downward flux eventually establishes a uniform soil water content and uniform soil water pressure throughout the profile, with a hydraulic gradient equal to minus one, i.e. 
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 is pointing down).  In this case the rainfall rate equals the capillary conductivity, that is 
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 of equivalent water column.  The manometer (at 0.5 m above the ground surface) of the tensiometer with its sensing element at 0.5 m below the surface reads a negative pressure of 160.32 cm; the tensiometer with its sensing element at 1.0 m below the surface reads a negative pressure of 210.32 cm.

9.8   (a) From (9.87), rewritten here for convenience 
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, one obtains a time to ponding of 
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(b) Equation (9.91), namely 
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(d) With the result of part (a) one obtains 
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9.9   a, b, c, e, f
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9.12   (a) Proceed in the same way as shown in (9.12) in the text to obtain 
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(b)  Symmetry is required.  This means that at 
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9.13   The answer, obtained with (9.24), is
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9.14   While reliable methods are available for numerical differentiation and integration, for the purpose of this exercise a simple trapezoidal approach should be adequate.  Thus finite difference approximation of (9.25) produces for the following values of the water content 
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9.15   While reliable methods are available for numerical differentiation and integration, for the purpose of this exercise a simple trapezoidal approach should be adequate.  Thus finite difference approximation of (9.25) produces for the following values of the water content 
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9.16   Since for sorption the water content is a function of the Boltzmann variable, i.e. 
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9.17   From the definition of 
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Upon integration this immediately leads to (9.28)

9.18   From the definition of 
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The double integral in the numerator of (1) can be worked out by parts, namely as 
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.  The first term in this expression is zero at both 
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9.19   With 
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Elimination of time between these two expressions leads to the following relationship between the infiltrated volume and the distance to the wetting front 
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If the diffusivity is given by (8.39) this becomes
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For 
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9.20   The maximal flux, 
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Put now 
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This changes (9.103) further into 
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The definite integral is known to be equal to 
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, and the desired result (9.104) follows immediately.

9.21   The depth, for which the soil definitely controls the flux, is given by (9.104); if it is smaller than that, the atmosphere also plays a role.  Thus with the given values of the parameters the result is 
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9.22    The parameters in (8.37) for Diablo loam can be obtained by inspection of Figure 8.29.  Close to saturation, when 
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 is small, the figure shows that 
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With these values of the parameters (9.105) produces the following results.

For depths of the water table at 
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Chapter 10

10.1   If a recession hydrograph can be described by an exponential decay function, such as (10.153), the flow at any time 
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10.2   Integration of (10.157) with the stated boundary condition can be written as 
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10.3   (a) The derivative of (10.153), namely 
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[image: image711.wmf]71

(3.2410) s35.72 days

K

--

=´=

.

(b) The constant in (10.154) can be expressed in terms of the result of (a) as 
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10.4   (a) The derivative of (10.153), namely 
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(b) The constant in (10.154) can be expressed in terms of the result of (a) as 
[image: image719.wmf]exp(/)

r

KtK

=-D

, which yields a daily depletion ratio, i.e. for 
[image: image720.wmf]1

t

D=

  in the present case 
[image: image721.wmf]0.9675

r

K

=

.

10.5   (a) Straightforward.

(b) Equation (10.160) can also be written as
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The derivative of (10.160) is
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, or after substitution of (1) for the time variable, 
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.  This is in the form of (10.157) with the parameters as given in (10.161).

10.6   (a) Straightforward

(b) Equation (10.162) can also be written as
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The derivative of (10.162) is
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10.7    (a) Straightforward

(b) The derivative of (10.164) is obtained directly as
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, which is in the form of (10.157) with the parameters as given in (10.165).

10.8   According to (10.169) with (1.68) and 
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or since  
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Equation (10.170) yields the same result for 
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10.9   Multiplication of (10.161) by (10.165) with the default value 
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Equation (10.165) with the above result for D yields
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10.10   According to (10.174) the effective values at the basin scale are
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10.11   Division of (10.163) by (10.161) produces
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Equation (10.163) with the above result for 
[image: image740.wmf]o

k

 yields


[image: image741.wmf]11/31

212

2.969()(/)

e

nADaaa

--

=-

.

10.13    a, d, e, f, g

10.14    c, d

10.15    d, f

10.16    d, f

10.17    a, b, d, e

10.18   The governing equation is (10.5).  A solution can be attempted by separation of variables in the form of a product solution like (10.51), namely 
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Substitution into Laplace’s (10.5) produces in this case
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where 
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 dependent parts of this expression can only be equal if both are constant.  The constant is squared to ensure that each component of (1) is positive.  As will be seen below, each component of (1) must be positive for the solution to satisfy the boundary conditions along 
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and the solution of the ODE for 
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in which 
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 are additional constants.  All these constants can be determined from the boundary conditions (10.6).

The fourth of (10.6) requires 
[image: image753.wmf]2

0

dF

h

zdz

¶

==

¶

 at 
[image: image754.wmf]0

z

=

; this yields with (3) 
[image: image755.wmf]5

0

C

=

.

The third of (10.6) requires 
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With the two constants 
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 determined, the solution can be written for the time being
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in which  
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Consider next the fifth of boundary conditions (10.6).  It will prove convenient to shift the reference level of h by an amount D.  (This will not jeopardize the validity of (4) as a solution of (10.5), but will allow the formulation of the fifth of (10.6) in a more amenable form, namely
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This is realized by an infinite number of values of 
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For any given value of n the solution can now be written as 
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where 
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 is the constant for the particular value of n.  Only the first and the second of boundary conditions 10.6 remain to be satisfied.  It is clear from inspection that for 
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Imposition of the first of (10.6) on (6) yields
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and imposition of the second of (10.6) yields
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The values of the constants 
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 can now be obtained with the method of Fourier.  This consists of multiplying both sides of (7) and (8) by 
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This produces finally
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Insertion of this expression into (6) yields the desired result (10.7).

10.19    Both expressions in (10.8) involve similar operations.  The first requires first the partial derivative of (10.7) with respect to x, and then its integration over z.  The second expression in (10.8) requires first the partial derivative of (10.7) with respect to z, and then subsequently its integration over x.  For the present illustration consider the second option.
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At 
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Integration of the 
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so that
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from which (10.9) follows directly.

10.20   The time-dependent part of (10.70) can be written as 
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10.21   The ratio of the second and the first term of (10.112) is
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10.22   This problem is the inverse of the one treated in section 10.3.4, in that instead of draining of the aquifer, it describes its filling.

(a) Two essential boundary conditions are  
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A third boundary condition can be either
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(b) The application of Boltzmann’s transform (10.54)

(c)  If 
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 is known, by virtue of the applicability Boltzmann’s transform, we know that this solution is not a function of 
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10.23   Rewrite the unit response (10.117) for convenient reference
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    The outflow rate from the aquifer in response to an input 
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Thus if the input is given by (10.127) as described in Example 10.3, the response of the aquifer, as outflow rate at 
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Upon integration this becomes the desired result
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10.24   The linearized Boussinesq equation (10.88) is
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This partial differential equation can be transformed into an ordinary differential equation by means of the Boltzmann transform (10.54), i.e. 
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These transform the Boussinesq equation into
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10.25    b, e, g, h, i

Chapter 12

12.1

	
	1-hour
	Combined 
	
	1-hour
	Combined 

	    Time 
	   Unit   
	Storm
	
	    Time 
	   Unit   
	Storm

	     (h)
	Hydrogrph
	Outflow  
	
	     (h)
	Hydrogrph
	Outflow  

	
	(cm/h)  
	(cm/h)  
	
	
	(cm/h)  
	(cm/h)  

	0
	0
	0.0000
	
	8
	0.0138
	0.3443

	0.5
	0.016
	0.0240
	
	8.5
	0.0094
	0.2467

	1
	0.0828
	0.1242
	
	9
	0.0098
	0.1841

	1.5
	0.1766
	0.3049
	
	9.5
	0.0068
	0.1289

	2
	0.2392
	0.5658
	
	10
	0.0012
	0.0801

	2.5
	0.2624
	0.8975
	
	10.5
	0.0006
	0.0546

	3
	0.255
	1.3034
	
	11
	0.0038
	0.0469

	3.5
	0.2242
	1.6810
	
	11.5
	0.0028
	0.0322

	4
	0.183
	1.8449
	
	12
	-0.0016
	0.0118

	4.5
	0.146
	1.8029
	
	12.5
	-0.0012
	0.0075

	5
	0.1158
	1.6257
	
	13
	0.0016
	0.0132

	5.5
	0.0868
	1.3696
	
	13.5
	0.0012
	0.0097

	6
	0.0608
	1.0944
	
	14
	-0.0016
	-0.0046

	6.5
	0.044
	0.8524
	
	14.5
	-0.0012
	-0.0035

	7
	0.0346
	0.6555
	
	15
	0.0016
	0.0046

	7.5
	0.0244
	0.4851
	
	
	
	


12.2   a.   The unscaled S hydrograph obtained by means of the procedure illustrated in Figure 12.4 is tabulated in the first column of the table below.  The data given for this exercise are taken from one single storm runoff hydrograph, so they really cannot be expected to represent a “perfect” unit hydrograph.  It is no surprise therefore that this S hydrograph exhibits severe oscillations with a 4-hour period.  Although several schemes are possible, for the purpose of this exercise the S hydrograph can simply be smoothed by taking a running average after 3 h, namely by calculating the S value as follows 
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()/4

iiiii

SSSSS

-++

¢

=+++

, where 
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 is the smoothed value of the S hydrograph.  The smoothed hydrograph is shown in the second column and indicates that the equilibrium flow, resulting from a rainfall continuing indefinitely at the same rate, is 
[image: image820.wmf]3

65.915 m/s

.  Since the drainage area is 29.5 km2, this corresponds to a rainfall input rate of 0.80439 cm/h.

	
	 unscaled
	smoothed
	  2-hour
	
	 unscaled
	smoothed
	  2-hour

	    Time 
	S    
	S    
	unit   
	    Time 
	S    
	S    
	unit   

	
	hydrograph
	hydrograph
	hydrograph
	
	hydrograph
	hydrograph
	hydrograph

	(h)
	(m3/s)
	(m3/s)
	(m3/s)
	(h)
	(m3/s)
	(m3/s)
	(m3/s)

	0
	0.00
	0.00
	0.00
	8
	65.10
	61.29
	4.25

	1
	4.01
	4.01
	2.49
	9
	60.25
	63.37
	3.10

	2
	15.26
	15.26
	9.49
	10
	58.87
	64.69
	2.11

	3
	36.55
	35.43
	19.53
	11
	69.25
	65.53
	1.34

	4
	45.40
	43.42
	17.51
	12
	70.40
	65.92
	0.76

	5
	44.49
	49.52
	8.76
	13
	63.58
	65.92
	0.24

	6
	47.25
	54.45
	6.85
	14
	60.43
	65.92
	0.00

	7
	60.95
	58.39
	5.51
	15
	69.25
	65.92
	0.00


b.   The 2-hour unit hydrograph is obtainable by the shift-subtract procedure of the S hydrograph, as illustrated in Figure 12.5.  If the unit volume is taken as 1 cm, the 2-hour unit hydrograph is the result of a rainfall intensity of 0.5 cm/h lasting for 2 hours.  Thus, to ensure a volume of 1 cm, the shift-subtract result must be multiplied by 0.5 and divided by 0.804.  The final result is shown in the third column of the table above.

c.   The peak flow, resulting from the three rainfall bursts, calculated as illustrated in Figure 12.2, is 42.21 m3/s.

12.3   a.  The S hydrograph can be derived using the procedure illustrated in Figure 12.4.  The steady equilibrium shows some oscillations, but they are relatively mild so that the S hydrograph can be used as it is (i.e. without smoothing) to calculate the unit hydrograph for part (b).  The averaged equilibrium flow of this S hydrograph is 243.06 m3/s.  Hence, as the drainage area is 875 km2, the rainfall intensity that produced the 6-hour unit hydrograph, was 1.00 mm/h.  This also means that the “unit” volume of this unit hydrograph is 6 mm. 

b.   The 4-hour unit hydrograph, needed to calculate the runoff resulting from the three successive 4-hour periods of rain, can be obtained by the shift-subtract procedure with the S hydrograph, as illustrated in Figure 12.5.  A steady rainfall input of 1 mm/h, lasting for 4 hours produces a volume of 4 mm; therefore the result obtained from the shift-subtract procedure of the original S hydrograph must be multiplied by ¼ in order to obtain a unit hydrograph with a unit volume of 1 mm.  The resulting 4-hour unit hydrograph is shown in the table below.  The peak flow resulting from the three successive 4-hour periods of rain is 903 m3/s.

	Time
	4-h UH
	Time
	4-h UH
	Time
	4-h UH

	(h)
	m3/s
	(h)
	m3/s
	(h)
	m3/s

	0
	0
	28
	1.820
	54
	0.156

	2
	0.033
	30
	1.250
	56
	0.128

	4
	0.100
	32
	2.765
	58
	0.106

	6
	0.418
	34
	0.320
	60
	0.094

	8
	1.768
	36
	0.085
	62
	0.083

	10
	3.985
	38
	2.248
	64
	0.073

	12
	5.918
	40
	0.035
	66
	0.061

	14
	8.603
	42
	-0.365
	68
	0.050

	16
	13.323
	44
	1.898
	70
	0.039

	18
	20.755
	46
	-0.282
	72
	0.028

	20
	20.273
	48
	-0.532
	74
	0.017

	22
	15.325
	50
	0.916
	76
	0.006

	24
	12.753
	52
	0.183
	78
	0.000

	26
	7.100
	
	
	
	


12.4   The calculations can be carried out by forward substitution, as shown in (12.14).

Thus 
[image: image821.wmf]0

o

y

=

 and 
[image: image822.wmf]0

o

u

=

;


[image: image823.wmf]111111

 or /0.25/0.500.50

yxuuyx

====

;


[image: image824.wmf]2122122211

 or ()/(0.9171.50.5)/0.50.333

yxuxuuyxux

=+=-=-´=

, and in the same way 
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12.5     a, d, f, k, m.

12.6   (a)  The S hydrograph is given in m3/h.  To obtain the instantaneous unit hydrograph one has to take the derivative of 
[image: image827.wmf]()

u

St

; this yields 
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, but it must still be scaled to ensure that it yields a unit volume of 1 cm.  If the S hydrograph were expressed in cm/h, it should produce a steady outflow rate of 1 cm/h after a long time; in actual fact, the given expression yields 
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.  Therefore the instantaneous unit hydrograph must be scaled with 9000 to produce results in cm/h.  Finally, the desired result is  
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, which represents an outflow in cm/h per cm of instantaneous input volume.

(b)  The rain stops after 2 hours; therefore with 
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h, application of the convolution integral (12.2) yields
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12.7   (a)  
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Its units are cm/h.

(b)  The rain stops after 3 hours; therefore application of the convolution integral with 
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(c)  In this case the rain continues beyond 
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12.8     e, f, g

12.9   The four equations (12.17) and their analogs for 
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 can be written in the following form 
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.  The values of the coefficients of each of these equations can be written in matrix form as follows

	a 
	b 
	c 
	d 
	e 

	21
	12
	2
	0
	-11.49

	12
	21
	12
	2
	-14.72

	2
	12
	21
	12
	-10.82

	0
	2
	12
	21
	-5.28


The four simultaneous linear equations can be readily solved by a variety of methods.  

Gauss’s method produces for 
[image: image840.wmf]1234
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, the respective values 0.2919, 0.4146, 01921, and 0.1021; not surprisingly, these values resemble those used in Example 12.3, namely 0.3, 0.4, 0.2, and 0.1.

12.10      b, c, d, e

12.11     c

12.12     b, d, f, g, i

12.13    The right triangle shown as a dashed line in Figure 12.15 represents a triangular time-area function (or width function), which can be formulated as follows
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where 
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 is the time of concentration.  The unit response is calculated by applying (12.29) with this function.  Thus, one has for 
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which upon integration results in 
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or finally
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Similarly for 
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which yields
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Again, it can be readily checked that the two expressions yield the same value for 
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, as they should.  

12.14   The inflow into the third tank is the outflow from the second tank (12.36) plus an instantaneous rainfall input 
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; the response of the third tank is given by (12.28).  Therefore, the required convolution operation can be written as
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or, upon integration
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which is (12.37).

12.15   The inflow into the fourth tank is the outflow from the third tank (12.37) plus an instantaneous rainfall input 
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; the response of the third tank is given by (12.28).  Therefore, the required convolution operation can be written as
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or, upon integration
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12.16   The first moment of the unit response about the origin is by definition (13.9), that is 
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.  In the case of (12.41) this becomes
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The integral on the right is the complete gamma function 
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n

G+

, which in turn satisfies the recurrence relationship 
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12.17   The second moment of the unit response about the origin is by definition (13.9), that is 
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.  In the case of (12.41) this becomes
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The integral on the right is the complete gamma function 
[image: image865.wmf](2)
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, which in turn satisfies the recurrence relationship 
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 Hence, this second moment about the origin becomes 
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.  According to (13.12) the second moment about the mean is related to the first two moments about the origin by 
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 [see (12.42) and Exercise 12.16], one obtains immediately 
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12.18   In the case of a channel with a triangular cross section, both the cross sectional area 
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 are functions of the water depth 
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 are constants which can be readily determined for any triangular geometry; it follows that the hydraulic radius is 
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Hence the exponent of 
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 is 
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12.19   Because 
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With 
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yQA

=

 one obtains the outflow rate per unit area of catchment
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from which one obtains 
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and 
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This can be inserted in the integral (12.54) to yield
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in which z is the dummy variable of integration.  The values of the constants are 
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[image: image894.wmf]1/2

1/2

0.416 

 

e

o

nA

Sy

Lk

=


12.20   Because 
[image: image895.wmf]2   and /2 
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, (10.85) can be written as a positive flow rate in the channel 
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With 
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 one obtains the outflow rate per unit area of catchment
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This can be inserted directly into (12.54) as follows
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Upon integration this becomes


[image: image900.wmf]222

222

222

 

8exp

eo

o

oe

nAkpDLt

SLkpDA

kpDLnA

p

p

-

æöæö

=-

ç÷ç÷

ç÷ç÷

èøèø


which  is (12.56), that is 
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12.21   The straight line can be described by 
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 are constants.  The desired functional relationship can be obtained simply by taking the differentials of both sides, namely 
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12.22     d, e

Chapter 13

13.1

Because the mean, 
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, is a constant, the second moment about the mean can be developed as


[image: image907.wmf]222

2

2222

211

()()(2)()

     =()2()() 2

mxfxdxxxfxdx

xfxdxxfxdxfxdxmmm

mmm

mm

¥¥

-¥-¥

¥¥¥

-¥-¥-¥

=-=-+=

¢¢¢

-+=-+

òò

òòò


Similarly, with the same reasoning the third moment about the mean can be developed as
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13.2    By virtue of the first equation of (13.12), the second moment about the mean can be obtained form the first two moments about the origin by 
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; for the exponential distribution these two moments are
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Hence 
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13.3   The fourth septile, denoted by, say 
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or finally
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In a similar way one obtains for the fifth octile 
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15.4   The density function is given by 
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The second moment about the origin is
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With (13.12), that is 
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, the second moment about the mean, that is the variance, becomes
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13.5    The 95th percentile, say 
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13.6   A one hundred year event has a probability of non-exceedance 
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The probability that this event will be exceeded after exactly 100 years is given by the geometric distribution; thus
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The probability that this event will be exceeded some time in the coming 100 years, that is, that it will be exceeded before the 100 years have passed, is given by (13.30)??????; thus 
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13.7    b, c

13.8    d

13.9    a, d

13.10   Designate a week without rain as a success; thus the probability of success is 
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13.11    c, e

13.12   (a) The median flood of this sample is 309 m3/s.

(b) Its mean is 323.8 m3/s.   

(c) With the Weibull formula the estimate of the empirical non-exceedance probability of the m-th smallest event is 
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, and its return period 
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.  This means that the estimate of the 7-year flood is the 

12-th smallest event of this record; this has a flow rate of 427 m3/s.

(d) 331 m3/s is the 8-th smallest event of this sample and with the Weibull formula its empirical non-exceedance probability is 8/14; similarly 393 m3/s is the 10-th smallest event and its probability is 10/14.  Hence the probability that in any given year the maximum flow rate will lie between these two flow rates is 
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(e) The exponential distribution has only one parameter; therefore only one moment is needed, namely the first, i.e. the mean.  This can readily be shown to be given by (see also Exercises 12.16 and 13.2) 
[image: image942.wmf]1/

ml

=

; hence for this record 
[image: image943.wmf]-3

1/323.80.003088 s m

l

==

.

13.13    The mean of the first asymptote for largest values is given by 
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13.14    The non-exceedance probability in any one year is 
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13.15   (a) Fuller’s formula can be inverted to yield the return period as a function of the annual maximum, as follows
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Since by definition 
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(b)  
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;  the probability that this flood will be exceeded every single year in four consecutive years is 
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(c) The probability that this flood of 700 m3/s will be exceeded only once, namely in the last year of a four-year period is 
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